\qquad Date: \qquad

Representations of Categorical Data

1. What is your favorite color? When asked this question, the most popular color was blue.

2. Are you a lefty or a righty?

3. Do you eat breakfast or not?

Symbols	2-Way Table			
Key: 9th Grade: N 10 th Grade: T Eats Breakfast: E Not Breakfast: D	Breakfast		Not	Total
Sample Size:	9th			
$P(E)=$	10th			
$P(E \mid N)=$	Total			685
$P(E \mid T)=$ $P(E \cap N)=$ $P(E \cap T)=$	Is the breakfast preference independent of grade level? How do you know?			
Venn Diagram	Tree Diagram			
		50\%	$\%$	

4. The Humane Society likes to keep track of the percent of people who are dog and cat owners. Some people own only dogs, some only cats, and some own both.

The Humane Society reports that 13% of households own both dogs and cats, 33% own cats, 39% own dogs, and 41% don't own either.

Is ownership of dogs vs. cats independent? Justify your response with appropriate representations of the data and numerical calculations.

