Standard Form of a Quadratic: $f(x) = ax^2 + bx + c$

- I. Identify the a, b, and c.
- Find the <u>axis of symmetry</u>: = ^{-b}/_{2a}, this is the x of the vertex.
 Substitute the x back into the original equation to find the y of the vertex.
- 4. Plot the vertex.
- 5. Use the stretch to graph 5 points.

Example: $f(x) = x^2 + 4x - 8$	
Identify the a, b, and c.	a = 1, b = 4, c = -8
Find the <u>axis of symmetry:</u> $=\frac{-b}{2\pi}$, this is the x of	$r = \frac{-b}{-4} = \frac{-4}{-2}$
the vertex.	x = 2a = 2(1) = -2
Substitute the x back into the original equation to find the y of the vertex.	$y = x^{2} + 4x - 8 = (-2)^{2} + 4(-2) - 8$ $= -12$
Plot the vertex.	(-2, -12)
I. Use the stretch to graph 5 points. a = 1	

Example: $f(x) = x^2 + 6x - 2$

- I. Identify the a, b, and c. 2. Find the <u>axis of symmetry</u>: $x = \frac{-b}{2a}$, this is the x of the vertex.
- 3. Substitute the x back into the original equation to find the y of the vertex.
- 4. Plot the vertex.
- 5. Use the stretch to graph 5 points.

