Standard Form of a Quadratic: $f(x)=a x^{2}+b x+c$
I. Identify the a, b, and c.
2. Find the axis of symmetry: $=\frac{-b}{2 a}$, this is the x of the vertex.
3. Substitute the x back into the original equation to find the y of the vertex.
4. Plot the vertex.
5. Use the stretch to graph 5 points.

Example: $f(x)=x^{2}+4 x-8$

Identify the a, b, and c .	$a=1, b=4, c=-8$
Find the axis of symmetry: $=\frac{-b}{2 a}$, this is the x of the vertex.	$x=\frac{-b}{2 a}=\frac{-4}{2(1)}=-2$
Substitute the x back into the original equation to find the y of the vertex.	$\begin{gathered} y=x^{2}+4 x-8=(-2)^{2}+4(-2)-8 \\ =-12 \end{gathered}$
Plot the vertex.	(-2,-12)
I. Use the stretch to graph 5 points. $a=1$	

Example: $f(x)=x^{2}+6 x-2$
I. Identify the a, b, and c.
2. Find the axis of symmetry: $x=\frac{-b}{2 a}$, this is the x of the vertex.
3. Substitute the x back into the original equation to find the y of the vertex.
4. Plot the vertex.
5. Use the stretch to graph 5 points.

