1. $a^{m} * a^{n}=a^{m+n}$ - a is the base number - m and n are exponents with integers - Integers are + or - whole numbers	Product of Powers - Add the exponents Example: $3^{2} * 3^{4}=3 * 3 * 3 * 3 * 3 * 3=3^{6}$	
2. $\left(a^{m}\right)^{n}=a^{m n}$	Power of a Power - Multiply the exponents Example: $\left(3^{2}\right)^{4}=3^{2} * 3^{2} * 3^{2} * 3^{2}=3^{8}$	$\stackrel{\rightharpoonup}{0}$
3. $(a b)^{m}=a^{m} b^{m}$ - $\quad b$ is also a base number	Power of a Product - Distributive Property for exponents Example: $(3 x)^{2}=3^{2} x^{2}$	
4. $\left(a^{m} b^{n}\right)^{p}=a^{m p} b^{n p}$	Power of a monomial - Distributive Property for exponents Example: $\left(3^{2} x^{5}\right)^{4}=3^{8} x^{20}$	
5. $\frac{a^{m}}{a^{n}}=a^{m-n}$	Quotient of Powers - Subtract exponents Example: $\frac{x^{5}}{x^{3}}=x^{2}$	
6. $a^{0}=1 \quad a \neq 0$ - \neq means not equal	Example: $\frac{x^{3}}{x^{3}}=x^{3-3}=x^{0}=1$	
7. $a^{-n}=\frac{1}{a^{n}}$	Definition of Negative Exponents Example: $\frac{x^{4}}{x^{6}}=x^{4-6}=x^{-2}=\frac{1}{x^{2}}$	
8. $\frac{a^{-m}}{b^{-n}}=\frac{b^{n}}{a^{m}}$	A negative exponent means to switch the location up or down and change the sign of the exponent. Example: $\frac{x^{-2}}{y^{-3}}=\frac{y^{3}}{x^{2}}$	
9. $a^{1}=a$	Anything to the power of 1 is just itself and anything without an exponent is raised to the power of 1 .	

