Name: Da	te:
----------	-----

AP CALCULUS BC Unit 1 study guide

Show your work. Remember: 3 decimal places, rounded or truncated. No calculator

- 1. Find the slope of the line through (-3, 4) and (-8, 1).
- 2. Write the <u>slope-intercept form</u> of the equation of a line which passes through the point (-2, -3) and is perpendicular to the line 3x 5y = 1.

- 3. Given the function $f(x) = -2 + \sqrt{1-x}$, find the
 - a) domain

b) range

4. Determine algebraically (<u>not</u> graphically) whether the function $f(x) = \frac{x^4 + 1}{x^3 - 2x}$ is even, odd, or neither.

5. Sketch the graph of the piecewise function

$$y = \begin{cases} \sqrt{-x}, & -4 \le x \le 0 \\ \frac{1}{2}x + 1, & 0 < x \le 4 \end{cases}$$
 on the given axes.

6. Given the function $f(x) = \frac{2x-1}{3x+4}$, find $f^{-1}(x)$.

7. Simplify the following:

a)
$$\frac{x^2 - 16}{2x^2 - x} \div \frac{x + 4}{2x^2 - 3x - 2}$$

b)
$$\frac{\frac{x}{x+1} + \frac{x-2}{x+2}}{\frac{4x-3}{x^2 + 3x + 2}}$$

- 8. Let $y = \frac{1}{2}\cos\left(\frac{\pi}{2}x\right) 1$. Without graphing the function, find its
 - a) amplitude
- b) period
- c) domain
- d) range

9. Sketch the graphs of the function and its given transformation. Label three points on each graph.

a)
$$f(x) = \left(\frac{1}{2}\right)^x$$

b)
$$f(x) = -\left(\frac{1}{2}\right)^x - 3$$

10. Solve the following equation for x.

$$\log_2(x+7) + \log_2(x+8) = 1$$

Calculator allowed.

11. If
$$f(x) = 2 - x$$
 and $g(x) = \sqrt{1 - x}$, find

a) $(f \circ g)(-1)$

b) g(f(4))

- 12. The number of guppies in Susan's aquarium doubles every day. There are four guppies initially.
 - a) Write the number of guppies as a function of time t.
 - b) How many guppies were present after one week? Find your answer algebraically.

c) When will there be 2000 guppies? Solve algebraically.

13. The function $0 = \sin(2x)\ln(3x) - 2$ has many solutions. Use your calculator to graph the function and find one of the solutions in the domain [0, 10].