Riemann Sums: Let f be a function defined on a closed interval [a, b]. For any partition P of [a, b], let the numbers c_{k} be chosen arbitrarily in the subintervals $\left[x_{k-1}, x_{k}\right]$. If there exists a number I such that

$$
\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} f\left(c_{k}\right) \Delta x=I
$$

No matter how P and the c_{k} 's are chosen, then f is integrable on $[a, b]$ and I is the definite integral of f over [$a, b]$.
${ }^{* *} \mathrm{P}$ is the partition and the $\|P\|$ denotes the norm of the partition and it tends toward zero. Basically, the rectangles are getting more and more narrow.

The Existence of Definite Integrals: All continuous functions are integrable. That is, if a function f is continuous on an interval $[a, b]$, then its definite integral over [a, b] exists.

The Definite Integral of a Continuous Function on [a, b]: Let f be continuous on [a, b], and let [a,b] be partitioned into n subintervals of equal length $\Delta x=\frac{b-a}{n}$. Then the definite integral of f over [a, b] is given by $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(c_{k}\right) \Delta x$, where each c_{k} is chosen arbitrarily in the $k^{t h}$ subinterval.

Area Under a Curve: If $y=f(x)$ is a nonnegative and integrable over a closed interval [a, b], then the area under the curve $y=f(x)$ from a to b is the integral of from a to b.

$$
A=\int_{a}^{b} f(x) d x
$$

Area below the x-axis is considered negative thus:

$$
A=-\int_{a}^{b} f(x) d x
$$

Using fnlnt: Example: $\int_{0}^{3}(-160) d x=480$

Properties and Rules of Definite Integrals:

$\frac{d}{d x}[C]=0$	$\int 0 d x=C$
$\frac{d}{d x}[k x]=k$	$\int k d x=k x+C$
$\frac{d}{d x}[k f(x)]=k f^{\prime}(x)$	$\int k f(x) d x=k \int f(x) d x$
$\frac{d}{d x}[f(x) \pm g]=f^{\prime}(x) \pm g^{\prime}(x)$	$\int\left[f(x) \pm g(x) d x=\int f(x) d x \pm \int g(x) d x\right.$
$\frac{d}{d x}\left[x^{n}\right]=n x^{n-1}$	$\int x^{n} d x=\frac{x^{n+1}}{n+1}+C, \quad n \neq-1$
$\frac{d}{d x}[\sin x]=\cos x$	$\int \cos x d x=\sin x+C$
$\frac{d}{d x}[\cos x]=-\sin x$	$\int \sin x d x=-\cos x+C$
$\frac{d}{d x}[\tan x]=\sec ^{2} x$	$\int \sec ^{2} x d x=\tan x+C$
$\frac{d}{d x}[\sec x]=\sec x \tan x$	$\int \sec x \tan x=\sec x+C$
$\frac{d}{d x}[\cot x]=-\csc ^{2} x$	$\int \csc ^{2} x=-\cot x+C$
$\frac{d}{d x}[\csc x]=-\csc x \cot x$	$\int \csc x \cot x=-\csc x+C$
$\frac{d}{d x}\left[e^{x}\right]=e^{x}$	$\int e^{x}=e^{x}+C$
$\frac{d}{d x}\left[a^{x}\right]=(\ln a) a^{x}$	$\int a^{x} d x=\frac{1}{\ln a} * a^{x}+C$
$\frac{d}{d x}[\ln x]=\frac{1}{x}, x>0$	$\int \frac{1}{x} d x=\ln \|x\|+C$

