Linearization: If you have a point and a derivative, you can use the tangent line to estimate another point on the function (a point that is very close to the point you already have.

**Concavity will influence if you estimate over or under.

Linearization: If f is differentiable at x = a, then the equation of the tangent line,

$$L(x) = f(a) + f'(a)(x - a),$$

Defines the linearization of f at a. The approximation $f(x) \approx L(x)$ is the standard linear approximation of f at a. The point x = a is the center of approximation.

Examples:

1. Use linearization to approximate the value of $f(1.2)if \frac{d}{dx}(f(x)) = -\frac{x}{y}$ and f(x) passes through the point (2, 1).

 Use the derivative and the ordered pair to find the slope of the tangent line at that particular point. 	$m = \frac{d}{dx}(f(x)) = -\frac{x}{y} = -\frac{2}{1} = -2$
 Use the slope of the tangent line and the point on the function to write the equation of the tangent line to the function at that point. 	y - 1 = -2(x - 2) $y = -2x + 5$
 Then use the tangent line equation to approximate the value of f(1.2) 	f(1.2) = -2(1.2) + 5 f(1.2) = 2.6

2. Find the linearization of $f(x) = \cos x$ at $x = \frac{\pi}{2}$. Use it to estimate $f(\frac{9\pi}{16})$

 Use the original function to find the complete ordered pair. 	$f(x) = \cos x$ $f\left(\frac{\pi}{2}\right) = \cos\frac{\pi}{2} = 0$ $\left(\frac{\pi}{2}, 0\right)$
 Find the derivative of the function and then the slope of the tangent line. 	$\frac{d}{dx}(f(x) = \cos x)$ $f'(x) = -\sin x$ $m = f'\left(\frac{\pi}{2}\right) = -\sin\frac{\pi}{2} = -1$
 Use the slope of the tangent line and the point on the function to write the equation of the tangent line to the function at that point. 	$y - 0 = -1\left(x - \frac{\pi}{2}\right)$

	$y = -x + \frac{\pi}{2}$		
4. Then use the tangent line equation to approximate the value of $f\left(\frac{9\pi}{16}\right)$	$f\left(\frac{9\pi}{16}\right) = -\frac{9\pi}{16} + \frac{8\pi}{16}$		
	*** Can check with graph.		

AP Problems:

1. Let f be a differentiable function such that f(3) = 2 and f'(3) = 5. If the tangent line to the graph of f is used to find an approximation to a zero of f, that approximation is

d. 0.4 d. 0.5 c. 2.6 d. 0.4 e. 0.5
--

2.

x	-1.5	-1.0	05	0	0.5	1.0	1.5
f(x)	-1	-4	-6	-7	-6	-4	-1
f'(x)	-7	-5	-3	0	3	5	7

a. Write the equation of the tangent to the graph of f at the point where x = 1. Use this line to approximate the value of f(1.2).

b. Is the approximation greater or less than f(1.2)? How do you know?