Linearization: If you have a point and a derivative, you can use the tangent line to estimate another point on the function (a point that is very close to the point you already have.
${ }^{* *}$ Concavity will influence if you estimate over or under.
Linearization: If f is differentiable at $x=a$, then the equation of the tangent line,

$$
L(x)=f(a)+f^{\prime}(a)(x-a),
$$

Defines the linearization of f at a . The approximation $f(x) \approx L(x)$ is the standard linear approximation of f at a. The point $x=a$ is the center of approximation.

Examples:

1. Use linearization to approximate the value of $f(1.2) i f \frac{d}{d x}(f(x))=-\frac{x}{y}$ and $f(x)$ passes through the point $(2,1)$.

1. Use the derivative and the ordered pair to find the slope of the tangent line at that particular point.	$m=\frac{d}{d x}(f(x))=-\frac{x}{y}=-\frac{2}{1}=-2$
2. Use the slope of the tangent line and the point on the function to write the equation of the tangent line to the function at that point.	$y-1=-2(x-2)$
3. Then use the tangent line equation to approximate the value of $\mathrm{f}(1.2)$	$y=-2 x+5$

2. Find the linearization of $f(x)=\cos x$ at $x=\frac{\pi}{2}$. Use it to estimate $f\left(\frac{9 \pi}{16}\right)$

1. Use the original function to find the	
complete ordered pair.	$f(x)=\cos x$ $f\left(\frac{\pi}{2}\right)=\cos \frac{\pi}{2}=0$
2. Find the derivative of the function and then the slope of the tangent line.	$\frac{d}{d x}(f(x)=\cos x)$ $f^{\prime}(x)=-\sin x$ $m=f^{\prime}\left(\frac{\pi}{2}\right)=-\sin \frac{\pi}{2}$
3. Use the slope of the tangent line and the point on the function to write the equation of the tangent line to the function at that point.	$y-0=-1\left(x-\frac{\pi}{2}\right)$

	$y=-x+\frac{\pi}{2}$
4. Then use the tangent line equation to approximate the value of $f\left(\frac{9 \pi}{16}\right)$	$f\left(\frac{9 \pi}{16}\right)=-\frac{9 \pi}{16}+\frac{8 \pi}{16}$
	${ }^{* * *}$ Can check with graph.

AP Problems:

1. Let f be a differentiable function such that $f(3)=2$ and $f^{\prime}(3)=5$. If the tangent line to the graph of f is used to find an approximation to a zero of f, that approximation is

a. 0.4	b. 0.5	c. 2.6	d. 3.4	e. 5.5

2.

x	-1.5	-1.0	-.05	0	0.5	1.0	1.5
$f(x)$	-1	-4	-6	-7	-6	-4	-1
$f^{\prime}(x)$	-7	-5	-3	0	3	5	7

a. Write the equation of the tangent to the graph of f at the point where $x=1$. Use this line to approximate the value of $f(1.2)$.
b. Is the approximation greater or less than $f(1.2)$? How do you know?

