The first derivative of a function describes: \qquad
The second derivative of a function describes: \qquad

Concave up: Means the graph is like a bowl.
Concave down: Means the graph is like a hill.
Point of Inflection: A point where the graph of a function has a tangent line and where the concavity changes is a point of inflection.

Example: Find all points of inflection of the graph of $y=e^{-x^{2}}$

a. Find the second derivative	$\begin{gathered} y=e^{-x^{2}} \\ y^{\prime}=e^{-x^{2}} *(-2 x) \\ y^{\prime \prime}=e^{-x^{2}}(-2 x)(-2 x)+e^{-x^{2}}(-2) \\ =e^{-x^{2}}\left(4 x^{2}-2\right) \end{gathered}$
b. It is tempting to oversimplify a point of inflection as a point where the second derivative is zero, but that can be wrong for 2 reasons. i. The second derivative can be a zero at a noninflection point. (Note that f' does not change sign at $\mathrm{x}=0$ of $f(x)=x^{4}$) ii. The second derivative need not be a zero at an inflection point. Example: $f(x)=\sqrt[3]{x}$ The concavity changes at $x=0$ but there is a vertical tangent line, so both $f^{\prime}(0)$ and $f^{\prime \prime}(0)$ fail to exist.	$\begin{gathered} 0=\left(e^{-x^{2}}\right)\left(4 x^{2}-2\right) \\ 0=\left(4 x^{2}-2\right) \\ x= \pm \sqrt{\frac{1}{2}} \end{gathered}$

Examples:

1. $f(x)=x^{4}-4 x^{3}+2$
2. $f(x)=x^{\frac{2}{3}}-3$

Second Derivative Test for Local Extrema:

- If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$, then f has a local max at $x=c$.
- If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$, then f has a local min at $x=c$

Use the Second Derivative Test to find the relative extrema of the following functions.

1. $f(x)=-\frac{1}{4} x^{4}+\frac{9}{2} x^{2}+5$
2. $f(x)=x e^{-x}$

Connecting f, f', and f" numerically.

x	0	$0<x<1$	1	$1<x<2$	2	$2<x<3$	3	$3<x<4$
$f(x)$	-1	Negative	0	Positive	2	Positive	0	Negative
$f^{\prime}(x)$	4	Positive	0	Positive	DNE	Negative	-3	Negative
$f^{\prime \prime}(x)$	-2	Negative	0	Positive	DNE	Negative	0	Negative

Let f be a function that is continuous on the interval $[0,4)$. The function f is twice differentiable except at $x=2$. The function f and its derivatives have the properties indicated in the table above, where DNE indicates that the derivatives of f do not exist at $\mathrm{x}=2$.
a. For $0<x<4$, find all values of x at which f has relative extremum. Determine whether f has a relative maximum or relative minimum at each of these values. Justify your answer.
b. On the axes provided, sketch the graph of a function that has all the characteristics of f.

