5.4 More Analyses of graphs using f' and f"

The first derivative of a function describes:

The second derivative of a function describes:

Concave up: Means the graph is like a bowl.

Concave down: Means the graph is like a hill.

Point of Inflection: A point where the graph of a function has a tangent line and where the concavity changes is a **point of inflection**.

Example: Find all points of inflection of the graph of $y = e^{-x^2}$

a. Find the second derivative	$y = e^{-x^2}$			
	$y' = e^{-x^2} * (-2x)$			
	$y'' = e^{-x^2}(-2x)(-2x) + e^{-x^2}(-2)$			
	$=e^{-x^2}(4x^2-2)$			
b. It is tempting to oversimplify a point of	$0 = (e^{-x^2})(4x^2 - 2)$			
inflection as a point where the	$0 = (4x^2 - 2)$			
second derivative is zero, but that can				
be wrong for 2 reasons.	$x = \pm \left \frac{1}{2} \right $			
i. The second derivative can be a	$\sqrt{2}$			
zero at a noninflection point.				
(Note that f' does not change				
sign at x = 0 of $f(x) = x^4$				
ii. The second derivative need not				
be a zero at an inflection point.				
Example: $f(x) = \sqrt[3]{x}$ The				
concavity changes at x = 0 but				
there is a vertical tangent line				
so both $f'(0)$ and $f''(0)$ fail to				
ovist				

Examples:

1. $f(x) = x^4 - 4x^3 + 2$

2.
$$f(x) = x^{\frac{2}{3}} - 3$$

Second Derivative Test for Local Extrema:

- If f'(c)=0 and f''(c) < 0, then f has a local max at x = c.
- If f'(c)=0 and f''(c) > 0, then f has a local min at x = c

Use the Second Derivative Test to find the relative extrema of the following functions.

- 1. $f(x) = -\frac{1}{4}x^4 + \frac{9}{2}x^2 + 5$
- 2. $f(x) = xe^{-x}$

Connecting f, f', and f" numerically.

x	0	0 < x < 1	1	1 < x < 2	2	2 < <i>x</i> < 3	3	3 < <i>x</i> < 4
f(x)	-1	Negative	0	Positive	2	Positive	0	Negative
f'(x)	4	Positive	0	Positive	DNE	Negative	-3	Negative
f''(x)	-2	Negative	0	Positive	DNE	Negative	0	Negative

Let f be a function that is continuous on the interval [0,4]. The function f is twice differentiable except at x = 2. The function f and its derivatives have the properties indicated in the table above, where DNE indicates that the derivatives of f do not exist at x = 2.

- a. For 0 < x < 4, find all values of x at which f has relative extremum. Determine whether f has a relative maximum or relative minimum at each of these values. Justify your answer.
- b. On the axes provided, sketch the graph of a function that has all the characteristics of f.

