5.3 Analyses of Graphs using f and f '

Looking back:

1. A particle moves along the x-axis so that its position at any time $t \geq 0$ is given by $x(t)=$ $t^{3}-t^{2}-t+3$. For what values of $t, 0 \leq t \leq 3$, is the particle's instantaneous velocity the same as its average velocity?
2. The table below shows the rate at which water is flowing out a pipe, in gallons per hour, at specific times. Is there a value of $\mathrm{t}, 0 \leq t \leq 24$ such that $R^{\prime}(t)=0$. Justify your answer.

\dagger (hours)	0	3	6	9	12	15	18	21	24
$R(\dagger)$ Gallons $/ \mathrm{hr}$	9.6	10.4	10.8	11.2	11.4	11.3	10.7	10.2	9.6

Things to note: We should note that velocity $\mathrm{v}(\mathrm{t})$ is the antiderivative of the constant function 9.8. So we can write: $v(t)=9.8 t+C$. When a body moves from rest, $v(0)=0$. We can solve and find $\mathrm{C}=0$; thus, $v(t)=9.8 t$. We also know that position is an antiderivative of $\mathrm{v}(\mathrm{t})$. So we can write it as $s(t)=4.9 t^{2}+C$ Since $s(0)=0$ (starting position at starting time). We can write our position function as $s(t)=4.9 t^{2}$.

Example: 1. With what velocity will you hit the water if you step off from a $20-\mathrm{m}$ diving platform? 2. With what velocity will you hit the water if you dive off the platform with an upward velocity of $2 \mathrm{~m} / \mathrm{sec}$?

a. Start with the position function and solve for \dagger.	$\begin{gathered} s(t)=4.9 t^{2} \\ 20=4.9 t^{2} \\ t=2.02 \end{gathered}$
b. Use the found time in the velocity equation.	$\begin{gathered} v(t)=9.8 t \\ v(t)=9.8(2.02) \\ v(t)=19.8 \mathrm{~m} / \mathrm{sec} \end{gathered}$
C. Use the velocity $v(t)=9.8 t+C$ but instead of $v(0)=0$, it now is $v(0)=2$.	$\begin{gathered} v(t)=9.8 t+C \\ 2=9.8(0)+C \\ C=2 \end{gathered}$
d. For part 2, begin with $v(t)=9.8 t+C$. Because the initial velocity is $2 \mathrm{~m} / \mathrm{sec}$ up, that is the opposite direction of gravity.	$\begin{gathered} v(t)=9.8 t+C \\ -2=9.8(0)+C \\ C=-2 \end{gathered}$
e. Then use the new $v(t)$ to find the antiderivative/position function.	$\begin{gathered} v(t)=9.8 t-2 \\ s(t)=4.9 t^{2}-2 t+C \\ -20=4.9(0)^{2}-2(0)+C \\ -20=C \\ s(t)=4.9 t^{2}-2 t-20 \end{gathered}$
f. Use graphing calculator to find when $t=0$. Then use that t in the $v(t)$ to find the velocity.	$\begin{gathered} t=2.235 \\ v(2.235)=9.8(2.235)-2 \\ =19.903 \mathrm{~m} / \mathrm{sec} \end{gathered}$

First Derivative Test for Local Extrema: The following test applies to continuous function $f(x)$.

- If f' changes from positive to negative at c, then there is a local max at c.
- If f^{\prime} changes from negative to positive at c, then there is a local min at c.
- If f' does not change signs, then f has no local extreme value at c.

Concavity: The graph of a differentiable function $y=f(x)$ is

- Concave up on an open interval If y^{\prime} is increasing on I.
- Concave down on an open interval I if y^{\prime} is decreasing on l.

Concavity Test: the graph of a twice-differentiable function $y=f(x)$ is

- Concave up on any interval where y " >0.
- Concave down on any interval where y"<0.

