Looking back:

- 1. A particle moves along the x-axis so that its position at any time $t \ge 0$ is given by $x(t) = t^3 t^2 t + 3$. For what values of t, $0 \le t \le 3$, is the particle's instantaneous velocity the same as its average velocity?
- 2. The table below shows the rate at which water is flowing out a pipe, in gallons per hour, at specific times. Is there a value of t, $0 \le t \le 24$ such that R'(t) = 0. Justify your answer.

t (hours)	0	3	6	9	12	15	18	21	24
R(t) Gallons/hr	9.6	10.4	10.8	11.2	11.4	11.3	10.7	10.2	9.6

Things to note: We should note that velocity v(t) is the antiderivative of the constant function 9.8. So we can write: v(t) = 9.8t + C. When a body moves from rest, v(0) = 0. We can solve and find C = 0; thus, v(t) = 9.8t. We also know that position is an antiderivative of v(t). So we can write it as $s(t) = 4.9t^2 + C$ Since s(0)=0 (starting position at starting time). We can write our position function as $s(t) = 4.9t^2$.

Example: 1. With what velocity will you hit the water if you step off from a 20-m diving platform? 2. With what velocity will you hit the water if you dive off the platform with an upward velocity of 2m/sec?

a. Start with the position function and solve for t.	$s(t) = 4.9t^2$ $20 = 4.9t^2$ t = 2.02
b. Use the found time in the velocity equation.	v(t) = 9.8t v(t) = 9.8(2.02) v(t) = 19.8 m/sec
c. Use the velocity $v(t) = 9.8t + C$ but instead of $v(0)=0$, it now is $v(0) = 2$.	$ \nu(t) = 9.8t + C $ 2 = 9.8(0) + C C = 2
d. For part 2, begin with $v(t) = 9.8t + C$. Because the initial velocity is 2 m/sec up, that is the opposite direction of gravity.	v(t) = 9.8t + C -2 = 9.8(0) + C C = -2
e. Then use the new v(t) to find the antiderivative/position function.	v(t) = 9.8t - 2 $s(t) = 4.9t^{2} - 2t + C$ $-20 = 4.9(0)^{2} - 2(0) + C$ -20 = C $s(t) = 4.9t^{2} - 2t - 20$
 f. Use graphing calculator to find when t = 0. Then use that t in the v(t) to find the velocity. 	t = 2.235 v(2.235) = 9.8(2.235) - 2 = 19.903 m/sec

First Derivative Test for Local Extrema: The following test applies to continuous function f(x).

- If f' changes from positive to negative at c, then there is a local **max** at c.
- If f' changes from negative to positive at c, then there is a local **min** at c.
- If f' does **not** change signs, then f has no local extreme value at c.

Concavity: The graph of a differentiable function y = f(x) is

- Concave up on an open interval I if y' is increasing on I.
- Concave down on an open interval I if y' is decreasing on I.

Concavity Test: the graph of a twice-differentiable function y = f(x) is

- **Concave up** on any interval where y">0.
- **Concave down** on any interval where y"<0.