Find all the relative extrema for $y=3 x^{4}-16 x^{3}+24 x+48$. Be sure to designate which are maxima and which are minima.

Use a calculator: Let f be the function with derivative given by $f^{\prime}(x)=\sin \left(x^{2}+1\right)$. How many relative extrema does f have on the interval $2<x<4$?

Mean Value Theorem for Derivatives: If $y=f(x)$ is continuous at every point of the closed interval [a, b] and differentiable at every point of its interior (a, b), then there is at least one point c in (a, b) at which

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Examples:

1. Given $f(x)=x^{2}$ on the interval $[0,2]$. Find a value for c such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$

$$
\begin{gathered}
f^{\prime}(c)=\frac{2^{2}-0^{2}}{2-0}=\frac{4}{2}=2 \\
f^{\prime}(c)=2 c=2 \\
c=1
\end{gathered}
$$

2. $f(x)=\sqrt{1-x^{2}}, A=(-1, f(-1)), B=(1, f(1))$. Find a tangent in $(-1,1)$ that is parallel to $\overline{A B}$

1. Find the ordered pairs.	a. $(-1,0)$ and $(1,0)$
2. Find the slope of $\overline{A B}$	b. $\frac{0-0}{1--1}=0$
3. Find the derivative of $\mathrm{f}(\mathrm{x})$.	c. $f^{\prime}(x)=\frac{-x}{\sqrt{1-x^{2}}}$
4. Set derivative equal to slope of $\overline{A B}$ and	d. $0=\frac{-x}{\sqrt{1-x^{2}}}$ solve for x.
e. $x=0$ f. $(0,1)$ g. $y=1$	

3. Find the c guaranteed by the Mean Value Theorem for $y=x^{3}-2 x^{2}+3$ on $[-1,2]$.

$$
\begin{gathered}
f^{\prime}(c)=\frac{\left(2^{3}-2 * 2^{2}+3\right)-\left((-1)^{3}-2(-1)^{2}+3\right)}{2--1}=\frac{3}{3}=1 \\
3 x^{2}-4 x=1 \\
3 x^{2}-4 x-1=0
\end{gathered}
$$

**Use the quadratic formula to solve for x .

Rolle's Theorem: Let f be a function defined on a closed [a, b]. If:

- f is continuous on [a, b]
- f is differentiable on (a, b), and
- $f(a)=f(b)$

Then there is at least one number c in the open interval (a, b) for which $f^{\prime}(c)=0$
Increasing/Decreasing Function Test: Let f be a function that is differentiable on the open interval (a, b):

- If $f^{\prime}(c)>0$ on (a, b), then f is increasing on (a, b).
- If $f^{\prime}(c)<0$ on (a, b), then f is decreasing on (a, b).

Example: Determine where the function $f(x)=2 x^{3}-9 x^{2}+12 x-5$.
$\left.\begin{array}{|l|l|l|}\hline \begin{array}{|l|l|l|}\hline \text { 1. Find derivative. } & \text { a. } f^{\prime}(x)=6 x^{2}-18 x+12\end{array} \\ \hline \text { 2. Find critical points. } & \text { b. } 0=6\left(x^{2}-3 x+2\right) \\ 0=(x-1)(x-2) \\ x=1,2\end{array}\right)$

Antiderivative: A function $F(x)$ is an antiderivative of a function $f(x)$ if $F^{\prime}(x)=f(x)$ for all x in the domain of f. This process is called antidifferentiation.

Example: $f^{\prime}(x)=2 \rightarrow \rightarrow \rightarrow f(x)=2 x+C$
${ }^{* * *} \mathrm{C}$ is a constant we don't know. $f(x)=2 x+3$ has the same derivative as $f(x)=2 x-1000$

