5.1 Extreme Values of Functions

Looking Back: Given the function $f(x) = \begin{cases} \frac{(x^2-4)}{x-2}; & x \neq 2\\ 1; & x = 2 \end{cases}$, which of the following statements about f is true? F has a limit at x = 2. Ι. F is continuous at x = 2Π. III. F is differentiable at x = 2. a. I only b. Il only c. III only d. I and II e. I, II, and III Definition of Extrema Examples: Let f be defined on an interval I containing c. 1. f(c) is the **minimum of f on I** when $f(c) \leq c$ (2, 5) • Maximum f(x) for all x in I. $f(x) = x^2 + 1$ 2. f(c) is the **maximum of f on I** when $f(c) \ge 1$ f(x) for all x in I. Minimum The minimum and maximum of a function on an interval (a) f is continuous, [-1, 2] is closed. are called the **extreme values**, or **extrema**. They call also be called the **absolute minimum or** No maximum maximum or global minimum or maximum. $f(x) = x^2 + 1$ Extrema can occur at interior points or endpoints of an interval. Endpoint extrema are extrema on the endpoints. Minimum - - 1 is continuous; (-1, 2) is open Maximum

Extreme Value Theorem: If f is continuous on a closed interval [a, b], then f has both a minimum and a maximum on the interval.

Definition of Relative Extrema:

- 1. If there is an open interval containing c on which f(c) is a maximum, then f(c) is called a **relative maximum** of f, or you can say that f has a **relative maximum at** (c, f(c)).
- 2. If there is an open interval containing c on which f(c) is a minimum, then f(c) is called a **relative minimum** of f, or you can say that f has a **relative minimum at** (c, f(c)).

The plural of relative maximum is relative maxima, the plural of relative minimum is relative minima. Relative maximum and relative minimum are sometimes called **local maximum and local minimum**, respectively.

Critical Number: Let f be defined at c. If f'(c) = 0 or if f is not differentiable at c, then c is a **critical number** of f.

Relative Extrema Occur Only at Critical Numbers: If f has a relative minimum or relative maximum at x = c, then ci s a critical number of f.

Examples:

A. Find all local and global extrema of $f(x) = \frac{1}{3}x^3 - \frac{5}{2}x^2 - 14x + 7$.

1. Find the derivative	a. $f'(x) = x^2 - 5x - 14$
 Set the derivative equal to zero and solve for x. 	b. $0 = x^2 - 5x - 14$ 0 = (x - 7)(x + 2) x = 7, -2

B. Find all absolute and relative extrema of $g(x) = \begin{cases} 5 - 2x^2; & x \le 1\\ x + 2; & x > 1 \end{cases}$

1. Find the derivative	a. $f'(x) = \begin{cases} \frac{d}{dx}(5 - 2x^2), & x < 1\\ \frac{d}{dx}(x + 2), & x > 1 \end{cases}$			
	b. $f'(x) = \begin{cases} -4x, & x \le 1\\ 1, & x > 1 \end{cases}$			
 Set the derivative equal to zero and solve for x. 	c. The only part that can be set equal to zero is $-4x$. At $-4x = 0$, $x = 0$.			
 What happens at x = 1? Find the right- and left- hand derivatives. 	d. $\lim_{h \to 0^+} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0^+} \frac{(1+h) + 2 - 3}{h} = \lim_{h \to 0^+} \frac{h}{h} = 1$			
	e. $\lim_{h \to 0^{-}} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0^{-}} \frac{5 - 2(1+h)^2 - 3}{h} = \lim_{h \to 0^{+}} \frac{-2h(2+h)}{h} = -4$			
 Because the one-sided limits are different, f has no derivative at x = 1, thus, 1 is another critical point of f. 				
 The domain of the function is (-∞,∞); th points are f(0) = 5 and f(1) = 3. 	erefore there are no endpoints and the only critical			

C. Finding Extrema on a Closed Interval: Find the extrema of $f(x) = 3x^4 - 4x^3$ on the interval [-1,2].

1. Find the derivative.	a. $f'(x) = 12x^3 - 12x^2$				
2. Set equal to zero and solve for x.	b. $0 = 12x^2(x-1)$				
·					
	x = 0, 1				
3. Then evaluate f at these two	Left	Critical	Critical	Right	
critical numbers and the two	Endpoint	Number	Number	Endpoint	
endpoints.	f(-1) = 7	f(0) = 0	f(1) = -1	f(2) = 16	
			Minimum	Maximum	