Looking Back: Given the function $f(x)=\left\{\begin{array}{cc}\frac{\left(x^{2}-4\right)}{x-2} ; & x \neq 2 \\ 1 ; & x=2\end{array}\right.$, which of the following statements about f is true?
I. \quad F has a limit at $x=2$.
II. F is continuous at $x=2$
III. F is differentiable at $x=2$.
a. I only
b. Il only
c. III only
d. I and ||
e. I, II, and III

Definition of Extrema

Let f be defined on an interval I containing c.

1. $f(c)$ is the minimum of \mathbf{f} on I when $f(c) \leq$ $f(x)$ for all x in I .
2. $f(c)$ is the maximum of f on I when $f(c) \geq$ $f(x)$ for all x in I .

The minimum and maximum of a function on an interval
are called the extreme values, or extrema. They call also be called the absolute minimum or maximum or global minimum or maximum.
Extrema can occur at interior points or endpoints of an interval. Endpoint extrema are extrema on the endpoints.

Extreme Value Theorem: If f is continuous on a closed interval $[a, b]$, then f has both a minimum and a maximum on the interval.

Definition of Relative Extrema:

1. If there is an open interval containing c on which $f(c)$ is a maximum, then $f(c)$ is called a relative maximum of f, or you can say that f has a relative maximum at $(\boldsymbol{c}, \boldsymbol{f}(\boldsymbol{c})$).
2. If there is an open interval containing c on which $f(c)$ is a minimum, then $f(c)$ is called a relative minimum of f, or you can say that f has a relative minimum at $(\boldsymbol{c}, \boldsymbol{f}(\boldsymbol{c})$).

The plural of relative maximum is relative maxima, the plural of relative minimum is relative minima. Relative maximum and relative minimum are sometimes called local maximum and local minimum, respectively.

Critical Number: Let f be defined at c . If $f^{\prime}(c)=0$ or if f is not differentiable at c , then c is a critical number of f.

Relative Extrema Occur Only at Critical Numbers: If f has a relative minimum or relative maximum at x $=c$, then cis a critical number of f.

Examples:
A. Find all local and global extrema of $f(x)=\frac{1}{3} x^{3}-\frac{5}{2} x^{2}-14 x+7$.

1. Find the derivative	a. $f^{\prime}(x)=x^{2}-5 x-14$
2. Set the derivative equal to zero and solve for x.	b. $0=x^{2}-5 x-14$
$0=(x-7)(x+2)$ $x=7,-2$	

B. Find all absolute and relative extrema of $g(x)=\left\{\begin{array}{cc}5-2 x^{2} ; & x \leq 1 \\ x+2 ; & x>1\end{array}\right.$

1. Find the derivative	a. $f^{\prime}(x)=\left\{\begin{array}{lc}\frac{d}{d x}\left(5-2 x^{2},\right. & x<1 \\ \frac{d}{d x}(x+2), & x>1\end{array}\right.$ b. $f^{\prime}(x)= \begin{cases}-4 x, & x \leq 1 \\ 1, & x>1\end{cases}$
2. Set the derivative equal to zero and solve for x.	c. The only part that can be set equal to zero is $-4 x$. At $-4 x=0, x=0$.
3. What happens at $x=1$? Find the rightand left- hand derivatives.	d. $\lim _{h \rightarrow 0^{+}} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0^{+}} \frac{(1+h)+2-3}{h}=\lim _{h \rightarrow 0^{+}} \frac{h}{h}=1$ e. $\lim _{h \rightarrow 0^{-}} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0^{-}} \frac{5-2(1+h)^{2}-3}{h}=$ $\lim _{h \rightarrow 0^{+}} \frac{-2 h(2+h)}{h}=-4$
4. Because the one-sided limits are different, f has no derivative at $x=1$, thus, 1 is another critical point of f.	
5. The domain of the function is $(-\infty, \infty)$; therefore there are no endpoints and the only critical points are $f(0)=5$ and $f(1)=3$.	

C. Finding Extrema on a Closed Interval: Find the extrema of $f(x)=3 x^{4}-4 x^{3}$ on the interval $[-1,2]$.

1. Find the derivative.
a. $f^{\prime}(x)=12 x^{3}-12 x^{2}$
2. Set equal to zero and solve for x.
b. $0=12 x^{2}(x-1)$

$x=0,1$				
Left Endpoint	Critical Number	Critical Number	Right Endpoint	
$f(-1)=7$	$f(0)=0$	$f(1)=-1$ Minimum	$f(2)=16$ Maximum	

