4.4 Derivatives of Inverse Trig Functions

Continuity and Differentiability of Inverse Functions: Let f be a function whose domain is an interval I. If f has an inverse function, then the following statements are true.

1. If f is continuous on its domain, then f^{-1} is continuous on its domain.
2. If f is differentiable on an interval containing c and $f^{\prime}(c) \neq 0$, then f^{-1} is differentiable at $f(c)$.

The Derivative of an Inverse Function: Let f be a function that is differentiable on an interval I . If f has an inverse function, then g is differentiable at any x for which $f^{\prime}(g(x)) \neq 0$. Moreover,

$$
g^{\prime}(x)=\frac{1}{f(g(x))}, f^{\prime}(g(x)) \neq 0
$$

Example: Let $f(x)=\frac{1}{4} x^{3}+x-1$
a. What is the value of $f^{-1}(x)$, when $x=3$?
b. What is the value of $\left(f^{-1}\right)^{\prime}(x)$, when $x=3$?
${ }^{* *}$ Notice that f is one-to-one and therefore has an inverse function.
a. Because $f(2)=3$, we know that $f^{-1}(3)=2$.
b. Because the function is differentiable and has an inverse function, you can write:

$$
f^{-1}(3)=\frac{1}{f^{\prime}\left(f^{-1}(3)\right)}=\frac{1}{f^{\prime}(2)}
$$

Using $f^{\prime}(x)=\frac{3}{4} x^{2}+1$

$$
f^{-1}(3)=\frac{1}{f^{\prime}(2)}=\frac{1}{\frac{3}{4}\left(2^{2}\right)+1}=\frac{1}{4}
$$

We can also write the inverse derivative as $\frac{d y}{d x}=\frac{1}{d x / d y}$
Derivatives of Inverse Trig Functions: Let u be a differentiable function of x.

$\frac{d}{d x}[\arcsin u]=\frac{u^{\prime}}{\sqrt{1-u^{2}}}$	$\frac{d}{d x}[\arccos u]=\frac{-u^{\prime}}{\sqrt{1-u^{2}}}$
$\frac{d}{d x}[\arctan u]=\frac{u^{\prime}}{1+u^{2}}$	$\frac{d}{d x}[\operatorname{arccot} u]=\frac{-u^{\prime}}{1+u^{2}}$
$\frac{d}{d x}[\operatorname{arcsec} u]=\frac{u^{\prime}}{\|u\| \sqrt{u^{2}-1}}$	$\frac{d}{d x}[\operatorname{arccsc} u]=\frac{-u^{\prime}}{\|u\| \sqrt{u^{2}-1}}$

Examples:
a. $\frac{d}{d x}[\arcsin 2 x]=\frac{2}{\sqrt{1-(2 x)^{2}}}=\frac{2}{\sqrt{1-4 x^{2}}}$
b. $\frac{d}{d x}[\arctan 3 x]=\frac{3}{1+(3 x)^{2}}=\frac{3}{1+9 x^{2}}$

Find the derivative of $y=\arcsin x+x \sqrt{1-x^{2}}$

$$
\begin{gathered}
\frac{d}{d x}\left(y=\arcsin x+x \sqrt{1-x^{2}}\right) \\
\frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}}+x\left(\frac{1}{2}\right)(-2 x)\left(1-x^{2}\right)^{-\frac{1}{2}}+\sqrt{1-x^{2}} \\
\frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}}-\frac{x^{2}}{\sqrt{1-x^{2}}}+\sqrt{1-x^{2}} \\
\frac{d y}{d x}=\sqrt{1-x^{2}}+\sqrt{1-x^{2}} \\
\frac{d y}{d x}=2 \sqrt{1-x^{2}}
\end{gathered}
$$

