4.3 Implicit Differentiation

Most function have been expressed in explicit form. For example: $y=3 x^{2}-5$, the variable y is explicitly written as a function of x.

Implicit form: when the function is not defined explicitly as a function of y in regards to x . For example the explicit equation $y=\frac{1}{x}$ can be written implicitly as $x y=1$

Implicit Form

$$
x y=1
$$

Explicit Form

$$
y=\frac{1}{x}
$$

$$
\frac{d y}{d x}=-x^{-2}=-\frac{1}{x^{2}}
$$

When you are unable to solve for y in terms of x , you can still find the derivative $\mathrm{dy} / \mathrm{dx}$.
Key to remember: The differentiation is taking place with respect to x. This means that when you differentiation terms involving x along, you can differentiation like normal. When you differentiation terms involving y, you must apply the Chain Rule.

Examples

$\frac{d}{d x}\left(x^{3}\right)=3 x^{2}$ $*$ *he variables agree on the left.	Variables agree; therefore, use Power Rule like usual.			
$\frac{d}{d x}\left(y^{3}\right)=3 y^{2} \frac{d y}{d x}$	Variables disagree; therefore, use the Chain Rule.			
*The variables disagree on the left		\quad	$\frac{d}{d x}(x+3 y)=1+3 \frac{d y}{d x}$	Chain Rule: $\frac{d}{d x}(3 y)=3 y^{\prime}$
:---:	:---			
$\frac{d}{d x}\left(x y^{2}\right)=\frac{d}{d x} x * y^{2}+x * \frac{d}{d x} y^{2}$	a. Product Rule			
$=(1) y^{2}+x\left(2 y \frac{d y}{d x}\right)$	b. Chain Rule			
$=y^{2}+2 x y \frac{d y}{d x}$	c. Simplify			

Example: Find dy/dx given that $y^{3}+y^{2}-5 y-x^{2}=-4$

1. Differentiation both sides of the equation with respect to x.

$$
\frac{d}{d x}\left(y^{3}+y^{2}-5 y-x^{2}=-4\right)
$$

2. Collect all terms involving $d y / d x$ on one side of the equation and move all other terms to the $3 y^{2} \frac{d y}{d x}+2 y \frac{d y}{d x}-5 \frac{d y}{d x}-2 x=0$ other side of the equation.

$$
3 y^{2} \frac{d y}{d x}+2 y \frac{d y}{d x}-5 \frac{d y}{d x}=2 x
$$

3. Factor out $d y / d x$.

$$
\frac{d y}{d x}\left(3 y^{2}+2 y-5\right)=2 x
$$

4. Solve for $d y / d x$.

$$
\frac{d y}{d x}=\frac{2 x}{3 y^{2}+2 y-5}
$$

Find the Derivatives of a Higher Order
Given $x^{2}+y^{2}=25$, find $\frac{d^{2} y}{d x^{2}}$
Differentiating each term with respect to x produces:

$$
\begin{gathered}
\frac{d}{d x}\left(x^{2}+y^{2}=25\right) \\
2 x+2 y \frac{d y}{d x}=0 \\
\frac{d y}{d x}=-\frac{x}{y}
\end{gathered}
$$

Differentiating a second time with respect to x yields:

$$
\frac{d^{2} y}{d x^{2}}=\frac{-y(1)-(x)\left(\frac{d y}{d x}\right)}{y^{2}}
$$

Substitute for $d y / d x$:

$$
\frac{d^{2} y}{d x^{2}}=\frac{-y(1)-(x)\left(-\frac{x}{y}\right)}{y^{2}}
$$

Simplify: $=-\frac{y^{2}+x^{2}}{y^{3}}$

Simplify more with substitution: $\frac{-25}{y^{3}}$

