The Chain Rule and . . .
... the Product Rule: Use the Product Rule and the Chain Rule at the same time.

Example: Find the derivative of $f(x)=x^{2} \sqrt{1-x^{2}}$

- Rewrite: $f(x)=x^{2}\left(1-x^{2}\right)^{\frac{1}{2}}$
- Apply the Product Rule and Chain Rule:
$f^{\prime}(x)=2 x *\left(1-x^{2}\right)^{\frac{1}{2}}+\frac{1}{2}(-2 x)\left(1-x^{2}\right)^{-\frac{1}{2}}\left(x^{2}\right)$
- Simplify: $f^{\prime}(x)=2 x \sqrt{1-x^{2}}-\frac{x^{3}}{\sqrt{1-x^{2}}}$
...the Quotient Rule: Use the Quotient Rule and the Chain Rule at the same time.

Example: Find the derivative of $f(x)=\frac{x}{\sqrt[3]{x^{2}+4}}$

- Rewrite: $f(x)=\frac{x}{\left(x^{2}+4\right)^{\frac{1}{2}}}$
- Apply the Quotient Rule and Chain Rule:

$$
f^{\prime}(x)=\frac{(1)^{\sqrt[3]{x^{2}+4}}-x * \frac{1}{3}(2 x)\left(x^{2}+4\right)^{-2 / 3}}{\left(x^{2}+4\right)^{2 / 3}}
$$

- Simplify: $f^{\prime}(x)=\frac{\left(x^{2}+4\right)^{1 / 3}-\frac{2 x^{2}}{3\left(x^{2}+4\right)^{2 / 3}}}{\left(x^{2}+4\right)^{2 / 3}}$
- Factor the numerator: $f^{\prime}(x)=\frac{1}{3}\left(x^{2}+4\right)^{-2 / 3}\left[\frac{3\left(x^{2}+4\right)-\left(2 x^{2}\right)(1)}{\left(x^{2}+4\right)^{2 / 3}}\right.$
- Simplify: $f^{\prime}(x)=\frac{x^{2}+12}{3\left(x^{2}+4\right)^{4 / 3}}$

Parametric functions and derivatives: A parametrized curve $(x(t), y(t))$ is differentiable at t if x and y are differentiable at t. At a point on a differentiable parametrized curve where y is also a differentiable function of x , the derivatives $d y / d t, d x / d t$, and $d y / d x$ are related by the Chain Rule.

$$
\frac{d y}{d t}=\frac{d y}{d x} * \frac{d x}{d t} \quad \text { or } \quad \frac{d y}{d x}=\frac{d y / d t}{d x / d t}
$$

If $\frac{d x}{d t} \neq 0$, we may divide both sides of this equation by $\frac{d x}{d t}$ to solve for $\frac{d y}{d x}$.
Example: Find the line tangent of the right-hand hyperbola branch defined parametrically by $x=\sec t, y=\tan t,-\frac{\pi}{2}<t<\frac{\pi}{2}$ at the point $(\sqrt{2}, 1)$, where $t=\pi / 4$.

$$
\begin{gathered}
\frac{d y}{d x}=\frac{d y / d t}{d x / d t} \\
=\frac{\sec ^{2} t}{\sec t \tan t} \\
=\frac{\sec t}{\tan t} \\
=\csc t
\end{gathered}
$$

Set $t=\frac{\pi}{4}$ gives $\csc \left(\frac{\pi}{4}\right)=\sqrt{2}$.
Then use this slope with the point to write the equation of the tangent line.

$$
\begin{gathered}
y-1=\sqrt{2}(x-\sqrt{2}) \\
y=x \sqrt{2}-2+1 \\
y=x \sqrt{2}-1
\end{gathered}
$$

