Composite Functions: Composite functions are the combination of two functions such as $f(x)$ and $g(x)$.
One function replaces allof the x's in the other function.
Notation: $(f \circ g)(x)$ or $f(g(x))$
Example: If $f(x)=x^{2}$ and $g(x)=2 x+1$, then $f(g(x))=(2 x+1)^{2}$
Practice:
I. $f(x)=x^{3}, g(x)=\sin x \quad$ Find: Find $(f \circ g)(x)$
2. $r(\theta)=2 \theta, s(\theta)=3 \theta+5$

Find: $(r \circ s)(\theta)$
3. $y(t)=\cos t, x(t)=t^{2}-1$

Find: Find $x(y(t))$

Another Thought: You can think of two functions in the composite function as an "outside" and an "inside" function. For example: $y=\cos ^{2} x$ can be rewritten as

$$
y=(\cos x)^{2}, \text { where the outside function is } y=u^{2} \text { and inside as } u=\cos x
$$

Practice: Name the outside and inside functions of the following composite functions.

| Function |  | Outside |
| :--- | :--- | :--- |
| I. $y=\sin \left(x^{2}+3\right)$ |  |  |
| 2. $y=(3 x-2)^{3}$ |  |  |
| 3. $y=\cos \left(x^{2}+x\right)$ |  |  |
| 4. $y=\sec (\tan x)$ |  |  |
| 5. $y=4 \sqrt{x^{2}-3}$ |  |  |

Ghain Rule: If $f$ is differentiable at the point $u=g(x)$, and $g$ is differentiable at $x$, then the composite function $(f \circ g)(x)=f(g(x))$ is differentiable at $x$, and its derivative

$$
d / d x[f(g(x))]=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

In other words: If you have a composite function, the derivative of this function is the derivative of the outside function (leaving the inside function alone) multiplied by the derivative of the inside function.

Examples:
I. $y=\sin \left(x^{2}+3\right)$
2. $y=(3 x-2)^{2}$
3. $y=\cos \left(x^{2}+x\right)$
4. $y=\sec (\tan x)$
5. $y=4 \sqrt{x^{2}-3 x}$

