4.1 Chain Rule Notes

Composite Functions: Composite functions are the combination of two functions such as f(x) and g(x). One function replaces all of the x's in the other function.

Notation: $(f \circ g)(x)$ or f(g(x))

Example: If $f(x) = x^2$ and g(x) = 2x + 1, then $f(g(x)) = (2x + 1)^2$

Practice:

- I. $f(x) = x^3$, $g(x) = \sin x$ Find: Find $(f \circ g)(x)$
- 2. $r(\theta) = 2\theta$, $s(\theta) = 3\theta + 5$ Find: $(r \circ s)(\theta)$
- 3. $y(t) = \cos t$, $x(t) = t^2 1$ Find: Find x(y(t))

Another Thought: You can think of two functions in the composite function as an "outside" and an "inside" function. For example: $y = \cos^2 x$ can be rewritten as

 $y = (\cos x)^2$, where the outside function is $y = u^2$ and inside as $u = \cos x$

Practice: Name the outside and inside functions of the following composite functions.

Function	Outside	Inside
I. $y = \sin(x^2 + 3)$		
2. $y = (3x - 2)^3$		
$3. y = \cos(x^2 + x)$		
$4. y = sec(\tan x)$		
$5. y = 4\sqrt{x^2 - 3}$		

Chain Rule: If f is differentiable at the point U = g(x), and g is differentiable at x, then the composite function $(f \circ g)(x) = f(g(x))$ is differentiable at x, and its derivative

 $d/dx[f(g(x))] = f'(g(x)) \cdot g'(x)$

In other words: If you have a composite function, the derivative of this function is the derivative of the outside function (leaving the inside function alone) multiplied by the derivative of the inside function.

Examples:

1. $y = \sin(x^2 + 3)$ 2. $y = (3x - 2)^2$ 3. $y = \cos(x^2 + x)$ 4. $y = \sec(\tan x)$ 5. $y = 4\sqrt{x^2 - 3x}$