3.7 Derivatives of Trigonometric Functions

Examples: Find the value of each of the following without a calculator.
a. $\cos \left(\sin ^{-1} \frac{\sqrt{2}}{2}\right)=\frac{\sqrt{2}}{2}$
b. $\sec \left(\tan ^{-1} \frac{1}{\sqrt{3}}\right)=\sec \left(\frac{\pi}{6}\right)=\frac{2}{\sqrt{3}}$
C. $\cos ^{-1}\left(\cos \frac{5 \pi}{4}\right)=\cos ^{-1}-\frac{\sqrt{2}}{2}=\frac{5 \pi}{4}$

Derivatives of Trig Functions

$$
\begin{aligned}
& \frac{d}{d x} \sin x=\cos x \\
& \frac{d}{d x} \cos x=-\sin x \\
& \frac{d}{d x} \tan x=\sec ^{2} x \\
& \frac{d}{d x} \sec x=\sec x \tan x \\
& \frac{d}{d x} \cot x=-\csc ^{2} x \\
& \frac{d}{d x} \csc x=-\csc x \cot x
\end{aligned}
$$

Examples: No Calculator. Find y^{\prime} if

a. $y=x^{2} \sin x$	
Product Rule: $y^{\prime}=2 x \sin x+x^{2} \cos x$	b. $y=\frac{\cos x}{1-\sin x}$
Quotient Rule: $y^{\prime}=\frac{-\sin x(1-\sin x)-\cos x(-\cos x)}{(1-\sin x)^{2}}$	
	Simplify: $y^{\prime}=\frac{-\sin x+\sin ^{2} x+\cos ^{2} x}{(1-\sin x)^{2}}=\frac{1}{1-\sin x}$

c. Find $y^{\prime \prime}$ if $y=\sec x$

First Derivative: $y^{\prime}=\sec x \tan x$
Product Rule: $y^{\prime \prime}=\sec x \tan x \tan x+\sec x \sec ^{2} x$
Simplify: $y^{\prime \prime}=\sec x \tan ^{2} x+\sec ^{3} x$

A weight hanging froma spring is stretched 5 units beyond its rest position ($s=0$) and released at time $\dagger=0$ to bob up and down. Its position at any time later \dagger is given by the function $s=5 \cos t$. What are its velocity and acceleration at time t?

Calculator: Find the equations of the lines that are tangent and normal to the curve

$$
f(x)=\frac{\tan x}{x} \text { at } x=2
$$

