I. Derivative of a Constant Function: If f is the function with the constant value c, then $\frac{d f}{d x}=\frac{d}{d x}(c)=0$

Proof: If $f(x)=c$ is a function with a constant value c, then

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{c-c}{h}=\lim _{h \rightarrow 0} 0=0
$$

Example I: Find the derivative of $f(x)=34$
2. Power Rule for Integer Powers of x : If n is a positive integer, then $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$

Proof: If $f(x)=x^{n}$, then

$$
\begin{gathered}
\frac{d}{d x}\left(x^{n}\right)=\lim _{h \rightarrow 0} \frac{(x+h)^{n}-x^{n} h}{h} \\
=\lim _{h \rightarrow 0} \frac{x^{n}+n x^{n-1} h+h^{2}-x^{n}}{h} \\
=\lim _{h \rightarrow 0} \frac{n x^{n-1} h+h^{2}}{h} \\
=\lim _{h \rightarrow 0} n x^{n-1}+h \\
=n x^{n-1}
\end{gathered}
$$

Example 2: Find the derivative of $f(x)=x^{3}$
3. The Constant Multiple Rule: If u is differentiable function of x and c is a constant, then

$$
\frac{d}{d x}(c u)=c \frac{d u}{d x}
$$

Proof:

$$
\begin{gathered}
\frac{d}{d x}(c u)=\lim _{h \rightarrow 0} \frac{c u(x+h)-c u(x)}{h} \\
=c \lim _{h \rightarrow 0} \frac{u(x+h)-u(x)}{h} \\
=c \frac{d u}{d x}
\end{gathered}
$$

Example: Find the derivative of $f(x)=3 x^{2}$
4. The Sum and Difference Rule: If u and v are differentiable functions of x, then their sum and difference are differentiable at every point where u and v are differentiable. At such points, $\frac{d}{d x}(u \pm v)=\frac{d u}{d x} \pm \frac{d v}{d x}$.

Proof: $\frac{d}{d x}(u \pm v)=\frac{d u}{d x} \pm \frac{d v}{d x}$
Use the difference quotient for $f(x)=u(x)+v(x)$

$$
\begin{gathered}
\frac{d}{d x}[u(x)+v(x)]=\lim _{h \rightarrow 0} \frac{[u(x+h)+v(x+h)]-[u(x)+v(x)]}{h} \\
=\lim _{h \rightarrow 0} \frac{[u(x+h)-u(x)+v(x+h)-v(x)]}{h} \\
=\frac{d u}{d x}+\frac{d v}{d x}
\end{gathered}
$$

Example: Find $f^{\prime}(x)$ if $f(x)=x^{3}+6 x^{2}-\frac{5}{3} x$
5. The Product Rule: The product of two differentiable functions v and v is differentiable, and

$$
\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}
$$

Proof: $\frac{d}{d x}(u v)=\lim _{h \rightarrow 0} \frac{u(x+h) v(x+h)-u(x) v(x)}{h}$
To change the fraction into an equivalent one that contains difference quotients for the derivatives of u and v, we subtract and add $u(x+h) v(x)$ in the numerator.

$$
=\lim _{h \rightarrow 0} \frac{u(x+h) v(x+h)-u(x+h) v(x)+u(x+h) v(x)-u(x) v(x)}{h}
$$

Then factor and separate.

$$
\begin{gathered}
=\lim _{h \rightarrow 0}\left[u(x+h) \frac{v(x+h)-v(x)}{h}+v(x) \frac{u(x+h)-u(x)}{h}\right. \\
=\lim _{h \rightarrow 0} u(x+h) * \lim _{h \rightarrow 0} \frac{v(x+h)-v(x)}{h}+v(x) \lim _{h \rightarrow 0} \frac{u(x+h)-u(x)}{h} \\
\frac{d}{d x}(u \pm v)=\frac{d u}{d x} \pm \frac{d v}{d x}
\end{gathered}
$$

Example: Find $f^{\prime}(x)$ if $f(x)=\left(x^{2}+1\right)\left(x^{3}+3\right)$
6. The Quotient Rule: At a point where $v \neq 0$, the quotient $y=u / v$ of two differentiable functions is differentiable, and $\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$

Horizontal Tangent: To find the horizontal tangent, first find the derivative of the function. Then set the derivative equal to zero and solve for x .

Example: $y=4 x^{3}-6 x^{2}-1, y^{\prime}=12 x^{2}-12 x, x=0, x=1$

