3.3 Rules for Differentiation

. Derivative of a Constant Function: If £ is the function with the constant value ¢, then
d
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Proof: If f(x) = ¢ is a function with a constant value ¢, then
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Example [ Find the derivative of f(x) = 34
2. Power Rule for Integer Powers of x: If n is a positive integer, then ;—x (x™) = nx™ !

Proof: If f(x) = x™, then
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Example 2: Find the derfvative of f(x) = x3

3. The Constant Multiple Rule: If u is differentiable function of ¥ and ¢ is a constant, then
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Example: Find the derivative of f(x) = 3x2

4. The Sum and Difference Rule: If u and v are differentiable functions of x, then their sum and
dif ference are diff’ erentiable at every point where U and v are differentiable. At such points,
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Use the difference quotient for f(x) = u(x) + v(x)
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Example: Find £(x) i f(x) = x3 + 6x% — gx

5. The Product Rule: The product of two differentiable functions v and v is differentiable, and
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To change the fraction into an equivalent one that contains difference quotients for the derivatives of U
and v, we subtract and add u(x +h)v(x) in the numerator.
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Then factor and separate.
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Example: Find £'(x) if f(x) = (x? + 1)(x3 + 3)

6. The Quotient Rule: At a point where v # 0, the quotient y = %/, of two differentiable functions is
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Horizontal Tangent: To £ind the horizontal tangent, first £ind the derivative of the function. Then set the
derivative equal to zero and solve for X.

Example: y = 4x3 —6x2 — 1,y = 12x2 = 12x,x = 0,x = 1



