Derivative: The derivative of the function f with respect to the variable x is the function f^{\prime} whose value at x is

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \text { or } \lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

The derivative a function of x is also a function of x. This "new" function gives the slop of the tangent line to the graph of f at the point $(x, f(x))$.

Derivatives are used to find instantaneous rate of change of one variable with respect to another.
Differentiation: the process of finding the derivative.
Differentiable: a function is differentiable at x when its derivative exists at x and is differentiable on an open interval $(a, b) . \leftarrow \leftarrow \leftarrow$ SUPER IMPORTANT.

Example I: Differentiate $f(x)=x^{3}$

$$
\begin{gathered}
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
=\lim _{h \rightarrow 0} \frac{(x+h)^{3}-x^{3}}{h} \\
=\lim _{h \rightarrow 0} \frac{\left(x^{3}+3 x^{2} h+3 x h^{2}+h^{3}\right)-x^{3}}{h} \\
=\lim _{h \rightarrow 0} \frac{\left(3 x^{3}+3 x h+h^{2}\right) h}{h} \\
\lim _{h \rightarrow 0}\left(3 x^{3}+3 x h+h^{2}\right)=3 x^{2}
\end{gathered}
$$

Notation: $f^{\prime}(x), \frac{d y}{d x}, y^{\prime}, \frac{d}{d x}[f(x)], D_{x}[y]$
Alternate Form of Derivative: $f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$ provided this limit exists.
Example 2: Differentiate $f(x)=\sqrt{x}$

$$
\begin{aligned}
& f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \\
& =\lim _{x \rightarrow a} \frac{\sqrt{x}-\sqrt{a}}{x-a} \\
& =\lim _{x \rightarrow a} \frac{\sqrt{x}-\sqrt{a}}{x-a} * \frac{\sqrt{x}+\sqrt{a}}{\sqrt{x}+\sqrt{a}} \\
& =\lim _{x \rightarrow a} \frac{x-a}{(x-a)(\sqrt{x}+\sqrt{a})}
\end{aligned}
$$

$$
\begin{gathered}
\lim _{x \rightarrow a} \frac{1}{\sqrt{x}+\sqrt{a}} \\
=\frac{1}{2 \sqrt{a}}
\end{gathered}
$$

The alternative limit form of the derivative is useful for investigating the relationship between differentiability and continuity.

The existence of the limit in this alternative form requires that one-sided limits exist and are equal.
$\lim _{x \rightarrow a^{-}} \frac{f(x)-f(a)}{x-a}=\lim _{x \rightarrow a^{+}} \frac{f(x)-f(a)}{x-a}$. These one-sided limits are called derivatives from the left and from the right.

Example 3:

The function $f(x)=|x-2|$ is continuous at $x=2$. The one-sided limits, however, are not equal, as shown.

$$
\begin{aligned}
& \lim _{x \rightarrow 2^{-}} \frac{f(x)-f(2)}{x-2}=\lim _{x \rightarrow 2^{-}} \frac{|x-2|-0}{x-2}=-1 \\
& \lim _{x \rightarrow 2^{+}} \frac{f(x)-f(2)}{x-2}=\lim _{x \rightarrow 2^{+}} \frac{|x-2|-0}{x-2}=1
\end{aligned}
$$

The function is not differentiable at $x=2$ and the graph of the function does not have a tangent line at the point (2,0).

Example 4: Find the equation of the tangent line to the graph of f at the indicated point.

