2.4 Rates of Change and Tangent Lines

Average Rate of Change: Slope. We can always think of an average rate of change as the slope of a secant line (the line connecting the two points on a curve).
Examples:

1. Determine the formula for the slope of the tangent to the curve $f(x)=x^{2}$.

At the point $(2,4)$.
a. Start with secant line through $P(2,4)$ and nearby point $Q\left(2+h,(2+h)^{2}\right)$
b. Write an expression for slope:

$$
\begin{aligned}
\text { Secant Slope }=\frac{\Delta y}{\Delta x}=\frac{(2+h)^{2}-4}{h} & \\
= & \frac{h^{2}+4 h+4-4}{h} \\
& =\frac{h^{2}+4 h}{h} \\
& =h+4
\end{aligned}
$$

c. The limit of the secant slope as Q approaches P along the curve is

$$
\lim _{Q \rightarrow P}(\text { secant slope })=\lim _{h \rightarrow 0}(h+4)=4
$$

d. This means the slope is 4 . Then use the point $\mathrm{P}(2,4)$ to find the equation of the line. $y=4 x-4$.
2. For example 1, at what value of x will the slope of the tangent to the curve be - 8 ?
3. Determine the formula for the slope of the tangent to the curve $f(x)=\frac{1}{x}$.
a. Find the slope of the curve at $x=a$.
$\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{a+h}-\frac{1}{a}}{h}=\lim _{h \rightarrow 0} \frac{1}{h} * \frac{a-(a+h)}{a(a+h)}=\lim _{h \rightarrow 0} \frac{-h}{h a(a+h)}=\lim _{h \rightarrow 0} \frac{-1}{a(a+h)}=\frac{-1}{a^{2}}$
b. Where does the slope equal $-1 / 4$?

$$
\begin{gathered}
\frac{-1}{a^{2}}=-\frac{1}{4} \\
a^{2}=4 \\
a= \pm 2
\end{gathered}
$$

**Then plug ± 2 into $f(x)=\frac{1}{x}$ to find the ordered pairs $\left(2, \frac{1}{2}\right)$ and $\left(-2,-\frac{1}{2}\right)$
c. What happens to the tangent to the curve at the point ($a, 1 / a$) for different values of a ? The slope $-1 / a^{2}$ is always negative.
4. Find the formula for the slope of the tangent to the curve $x^{2}-4 x$ at $x=1$
a. Write the equation for the tangent line at that point.
b. Write the equation for the normal at that point.

