2.3 Continuity

Continuous Function:
a. A function whose outputs vary continuously with the inputs and do not jump from one value to another without taking on the values in between.
b. Any function $y=f(x)$ whose graph can be sketched without lifting the pencil is continuous.
c. A function is continuous on an interval iff it is continuous at every point on the interval.
d. A continuous function is one that is continuous at every point of its domain.

Example:

The function is continuous on [0,4] exempt at $x=1$ and $x=2$.

Points at which f is continuous:

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} f(x)=f(0) \\
& \lim _{x \rightarrow 4^{-}} f(x)=f(4) \\
& \lim _{x \rightarrow c} f(x)=f(c)
\end{aligned}
$$

Continuity at a Point:

- Interior Point: A function $y=f(x)$ is continuous at an interior point c of its domain if $\lim _{x \rightarrow c} f(x)=f(c)$
- Endpoint: A function $y=f(x)$ is continuous at the left endpoint or is continuous at the right endpoint of its domain if

$$
\lim _{x \rightarrow a^{+}} f(x)=f(a) \text { or } \lim _{x \rightarrow b^{-}} f(x)=f(b)
$$

Discontinuous: A function is discontinuous if it is not continuous at a point c.

Examples of Discontinuity:

(a)

(c)

(c)

(b)

(d)

(f)
a.) Is continuous at $x=0$
b.) The discontinuity is removable.
c.) The discontinuity is removable.
d.) Has a jump discontinuity.
e.) Infinity

Discontinuity
f.) Oscillating

Discontinuity.

Removing a Discontinuity: Let $f(x)=\frac{x^{3}-7 x-6}{x^{2}-9}$

1. Factor the denominator. What is the domain of f ?
2. Investigate the graph of f around $\mathrm{x}=3$ to see that f has a removable discontinuity at $x=3$.
3. How should f be defined at $x=3$ to remove the discontinuity?
4. Show that $(x-3)$ is a factor of the numerator of f and remove all common factors. Now compute the limit as $x \rightarrow 3$ of the reduced form for f .
5. Show that the extended function: $g(x)=\left\{\begin{array}{cc}\frac{x^{3}-7 x-6}{x^{2}-9}, & x \neq 3 \\ \frac{10}{3}, & x=3\end{array}\right.$

Properties of Continuous Functions: If the functions f and g are continuous at $x=c$, then the following combinations are continuous at $x=c$.

1. Sums: $f+g$
2. Differences: $f-g$
3. Products: $f * g$
4. Constant Multples: $k * f$,for any number k
5. Quotients: $\frac{f}{g}$, provided $g(c) \neq 0$

Composites: All composites of continuous functions are continuous. If f is continuous at c and g is continuous at $f(c)$, then the composite of $f^{\circ} g$ is continuous at c.

Example: Show that $y=\left|\frac{x \sin x}{x^{2}+2}\right|$ is continuous.

Intermediate Value Theorem for Continuous Functions:
A function $y=f(x)$ that is continuous on a closed interval $[\mathrm{a}, \mathrm{b}]$ takes on every value between $f(a)$ and $f(b)$. In other words, if y_{0} is between $f(a)$ and $f(b)$, then $y_{0}=f(c)$ for some c in [a, b].

Let $g(x)=|x|$ and $f(x)=\frac{x \sin x}{x^{2}+2}$
We can see that y is a composite of $g^{\circ} f$.

We know that the absolute value of x is continuous. The function f is continuous by properties of continuous as functions. Therefore this function is continuous.

