2.3 Examples

1. $y=\frac{1}{(x+2)^{2}} \rightarrow \rightarrow \rightarrow x=-2$ which is an asymptote. Therefore this is an infinite discontinuity.
2. $y=\tan x=\frac{\sin x}{\cos x}=\frac{\#}{0}$
a. $=\frac{\pi}{2} \pm k \pi$
3.

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{c}
x^{2}-1,-1<x<0 \\
2 x, 0<x<1 \\
1, x=1
\end{array}\right. \\
&\left\{\begin{array}{c}
-2 x+4,1<x<2 \\
0,2<x<3
\end{array}\right.
\end{aligned}
$$

a. Does $\mathrm{f}(1)$ exist? Yes
b. Does $\lim _{x \rightarrow 1} f(x)$ exist? Yes
c. Does $\lim _{x \rightarrow 1} f(x)=f(1)$? No
d. Is f continuous at $\mathrm{x}=1$? No
4. $f(x)=\left\{\begin{array}{l}3-x, x<2 \\ \frac{x}{2}+1, x>2\end{array}\right.$
a. Find the point of discontinuity-graph the function to see $x=2$
b. Which is removable? Not removable because it is one-sided.
5. $f(x)=\left\{\begin{array}{c}1-x^{2}, x \neq 1 \\ 2, x=1\end{array}\right.$
a. Find the point of discontinuity-graph to see $x=-1$
b. Which is removable? $f(-1)=0$
6. Give a formula for the extended formula that is continuous at the indicated point. $f(x)=\frac{x^{3}-1}{x^{2}-1}, x=1$
a. Start by factoring: $f(x)=\frac{(x-1)\left(x^{2}+x+1\right)}{(x-1)(x+1)}$
b. Cancel: $f(x)=\frac{(x-1)\left(x^{2}+x+1\right)}{(x-1)(x+1)}$
c. Rewrite: $f(x)=\frac{\left(x^{2}+x+1\right)}{(x+1)}$

