Horizontal Asymptote: The line $y=b$ is a horizontal asymptote of the graph of a function $y=f(x)$ if either $\lim _{x \rightarrow \infty} f(x)=b$ or $\lim _{x \rightarrow-\infty} f(x)=b$.

Properties of Limits as $x \rightarrow \pm \infty$
If L, M, C, and k are real numbers and

$$
\lim _{x \rightarrow \pm \infty} f(x)=L \text { and } \lim _{x \rightarrow \pm \infty} g(x)=M
$$

1. Sum Rule

$$
\lim _{x \rightarrow \pm \infty} f(x)+g(x)=L+M
$$

The limit of the sum of two functions is the sum of their limits.
3. Product Rule

$$
\lim _{x \rightarrow \pm \infty}(f(x) * g(x))=L * M
$$

The limit of a product of two functions is the product of their limits.
5. Quotient Rule:

$$
\lim _{x \rightarrow \pm \infty} \frac{f(x)}{g(x)}=\frac{L}{M}, M \neq 0
$$

The limit of a quotient of two functions is the quotient of their limits, provided the limit of the denominator is not zero.
2. Difference Rule

$$
\lim _{x \rightarrow \pm \infty} f(x)-g(x)=L-M
$$

The limit of the difference of two functions is the difference of their limits.
4. Constant Multiple Rule:

$$
\lim _{x \rightarrow \pm \infty}(k * f(x))=k * L
$$

The limit of a constant times a function is the constant times the limit of the function.
6. Power Rule: If r and s are integers, $s \neq 0$, then

$$
\lim _{x \rightarrow \pm \infty}(f(x))^{r / s}=L^{r / s}
$$

Provided that $L^{r / s}$ is a real number. The limit of a rational power of a function is that power of the limit of the function, provided the latter is a real number.

Vertical Asymptote: A line $x=a$ is a vertical asymptote of the graph of a function $y=f(x)$ if either $\lim _{x \rightarrow a^{+}} f(x)= \pm \infty$ or $\lim _{x \rightarrow a^{-}} f(x)= \pm \infty$

Finding limits: $\lim _{x \rightarrow c} f(x)$

1. Substitute
a. Get a number-this is the limit
b. $\frac{0}{0}$ try another strategy
2. Factor and cancel
3. Multiply by the conjugate
4. Use trig identities and limits
5. Simplify complex fractions
**2 options-substitute again or move to c.
c. $\frac{n}{0}$ vertical asymptote
6. $\lim _{x \rightarrow c} f(x)=\infty$

7. $\lim _{x \rightarrow c} f(x)=-\infty$

8. $\lim _{x \rightarrow c} f(x)=$ D.N.E.

*** Watch for negative exponents. Move first, then evaluate.
