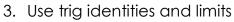
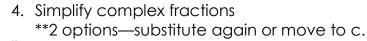
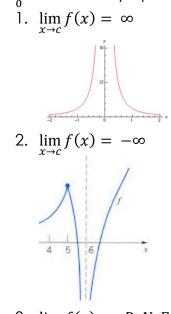
2.2 Limits Involving Infinity

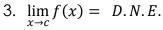
Horizontal Asymptote: The line y = b is a horizontal asymptote of the graph of a function y = f(x) if either $\lim_{x \to \infty} f(x) = b$ or $\lim_{x \to -\infty} f(x) = b$.

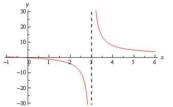

Properties of Limits as $x \to \pm \infty$	
If L, M, c, and k are real numbers and	
$\lim_{x \to \pm \infty} f(x) = L \text{ and } \lim_{x \to \pm \infty} g(x) = M$	
1. Sum Rule	2. Difference Rule
$\lim_{x \to +\infty} f(x) + g(x) = L + M$	
$x \rightarrow \pm \infty$	$\lim_{x \to \pm \infty} f(x) - g(x) = L - M$
The limit of the sum of two functions is the	The limit of the difference of two functions
sum of their limits.	is the difference of their limits.
3. Product Rule	4. Constant Multiple Rule:
$\lim_{x \to \pm \infty} (f(x) * g(x)) = L * M$	$\lim_{x \to \pm \infty} (k * f(x)) = k * L$
The limit of a product of two functions is	The limit of a constant times a function is
the product of their limits.	the constant times the limit of the
	function.
5. Quotient Rule:	6. Power Rule: If <i>r</i> and s are integers,
	$s \neq 0$, then
$\lim_{x \to \pm \infty} \frac{f(x)}{g(x)} = \frac{L}{M}, M \neq 0$	$\lim_{x \to \pm \infty} (f(x))^{r/s} = L^{r/s}$
The limit of a quotient of two functions is the quotient of their limits, provided the limit of the denominator is not zero.	Provided that $L^{r/s}$ is a real number. The limit of a rational power of a function is that power of the limit of the function, provided the latter is a real number.


Properties of Limits as $x \to \pm \infty$

Vertical Asymptote: A line x = a is a vertical asymptote of the graph of a function y = f(x) if either $\lim_{x \to a^+} f(x) = \pm \infty$ or $\lim_{x \to a^-} f(x) = \pm \infty$


Finding limits: $\lim_{x \to c} f(x)$


- 1. Substitute
 - a. Get a number—this is the limit
 - b. $\frac{0}{0}$ try another strategy
 - 1. Factor and cancel
 - 2. Multiply by the conjugate



c. $\frac{n}{0}$ vertical asymptote

*** Watch for negative exponents. Move first, then evaluate.