1.5 Polynomial Notes

Polynomial Function: Let n be a nonnegative integer and let $a_{n}, a_{n-1}, \ldots a_{2}, a_{1}, a_{0}$ be real numbers with $a_{n} \neq 0$. The function given by

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots a_{2} x^{2}+a_{1} x+a_{0}
$$

Is called a polynomial function in x of degree n .
Graphs: We read graphs from left to right.

| Leading Coefficient | What does the graph do |
| :---: | :---: | :---: |
| Odd and positive | Starts in bottom left and raises to right. |
| Odd and negative | Starts in the upper left and drops right |
| Even and positive | Both ends go down |
| Even and negative | |

Real Zeros of Polynomial Functions
If f is a polynomial function and a is a real number, the following statements are equivalent.

1. $x=a$ is a zero of the function f .
2. $x=a$ is a solution of the polynomial equation $f(x)=0$.
3. $(x-a)$ is a factor of the polynomial $f(x)$.
4. $(a, 0)$ is an x-intercept of the graph of f.

Find Zeros of a Polynomial Function
Example:
Find all real zeros of $f(x)=x^{3}-x^{2}-2 x$

1. Set equal to zero. $0=x^{3}-x^{2}-2 x$
2. Factor an $\mathrm{x} .0=\mathrm{x}\left(\mathrm{x}^{2}-x-2\right)$
3. Factor the quadratic. $0=x(x-2)(x+1)$
4. Solve for x . $x=0,2,-1$
5. Check work.

Repeated Zeros: For a polynomial function, a factor of $(x-a)^{k}, k>1$, yields a repeated zero $x=a$ of multiplicity k .

1. If k is odd, the graph crosses the x -axis at $\mathrm{x}=\mathrm{a}$.
2. If k is even, the graph touches the x -axis (but does not cross the x -axis) at $\mathrm{x}=\mathrm{a}$.

Long Division of Polynomials
Divide $6 x^{3}-19 x^{2}+16 x-4$ by $x-2$, and use the result to factor the polynomial completely.

$$
\begin{aligned}
& \text { Solution } \\
& \begin{array}{c}
\text { Partial quotients } \\
\downarrow \quad \downarrow \\
6 x^{2}-7 x+2 \\
6 x^{3}-19 x^{2}+16 x-4
\end{array} \\
& \frac{6 x^{3}-12 x^{2}}{-7 x^{2}}+16 x \quad l l l . ~ \text { Multiply: } 6 x^{2}(x-2) . \\
& \frac{-7 x^{2}+14 x}{2 x}-4 \quad \text { Multiply: }-7 x(x-2) \\
& \begin{aligned}
2 x-4 & \text { Multiply: } 2(x-2) . \\
0 & \text { Subtract. }
\end{aligned} \\
& f(x)=(x-2)(2 x-1)(3 x-2), \quad x=2, \frac{1}{2}, \frac{2}{3}
\end{aligned}
$$

Sometimes, long division will produce a nonzero remainder.
Example: $x^{2}+3 x+5$ by $x+1$

In fractional form, you can write this result as follows.

$$
\overbrace{\frac{x^{2}+3 x+5}{\text { Dividend }}}^{\underbrace{x+1}_{\text {Divisor }}}=\overbrace{x+2}^{\text {Quotient }}+\underbrace{\text { Remainder }}_{\underbrace{\frac{3}{x+1}}_{\text {Divisor }}}
$$

Synthetic Division:
Synthetic Division (of a Cubic Polynomial)
To divide $a x^{3}+b x^{2}+c x+d$ by $x-k$, use the following pattern.

Use synthetic division to divide $x^{4}-10 x^{2}-2 x+4$ by $x+3$

Solution

You should set up the array as follows. Note that a zero is included for each missing term in the dividend.

Then, use the synthetic division pattern by adding terms in columns and multiplying the results by -3 .

So, you have

$$
\frac{x^{4}-10 x^{2}-2 x+4}{x+3}=x^{3}-3 x^{2}-x+1+\frac{1}{x+3}
$$

The Rational Zero Test
If the polynomial

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots a_{2} x^{2}+a_{1} x+a_{0}
$$

Has integer coefficients, every rational zero of f has the form

$$
\text { Rational zero }=\frac{p}{q}
$$

Where p and q have no common factors other than $1, \mathrm{p}$ is a factor of the constant term a_{0} and q is a factor of the leading coefficient a_{n}.

Example: Find the rational zeros of $f(x)=2 x^{3}+3 x^{2}-8 x+3$

$$
\begin{gathered}
\qquad p=2 \text { and } q=3 \\
\text { Possible Rational Zeros }=\frac{\text { factors of } 3}{\text { factors of } 2}= \pm 1, \pm 3, \pm \frac{1}{2}, \pm \frac{3}{2}
\end{gathered}
$$

By synthetic division, you can determine that $x=1$ is a rational zero.

1	2	3	-8	3
		2	5	-3
	2	5	-3	0

So, $f(x)$ factors as

$$
f(x)=(x-1)\left(2 x^{2}+5 x-3\right)=(x-1)(2 x-1)(x+3)
$$

