1.5 Polynomial Notes

Polynomial Function: Let n be a nonnegative integer and let $a_n, a_{n-1}, \dots, a_2, a_1, a_0$ be real numbers with $a_n \neq 0$. The function given by

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

Is called a polynomial function in x of degree n.

Casalas	Wanaal		fragene		
Graphs	we read	granns	irom	тен, то	rigni
or aprior	IT O I OUU	Stapino	11 0 111	1010 00	115110

Leading Coefficient	What does the graph do		
Odd and positive	Starts in bottom left and raises to right.		
Odd and negative	Starts in the upper left and drops right		
Even and positive	Both ends go up		
Even and negative	Both ends go down		

Real Zeros of Polynomial Functions

If f is a polynomial function and a is a real number, the following statements are equivalent.

- 1. x = a is a zero of the function f.
- 2. x = a is a solution of the polynomial equation f(x) = 0.
- 3. (x a) is a factor of the polynomial f(x).
- 4. (*a*, 0) is an x-intercept of the graph of f.

Find Zeros of a Polynomial Function Example:

Find all real zeros of $f(x) = x^3 - x^2 - 2x$

- 1. Set equal to zero. $0 = x^3 x^2 2x$
- 2. Factor an x. $0 = x(x^2 x 2)$
- 3. Factor the quadratic. 0 = x(x-2)(x+1)
- 4. Solve for x. x = 0, 2, -1
- 5. Check work.

Repeated Zeros: For a polynomial function, a factor of $(x - a)^k$, k > 1, yields a repeated zero x = a of multiplicity k.

- 1. If k is odd, the graph crosses the x-axis at x = a.
- 2. If k is even, the graph touches the x-axis (but does not cross the x-axis) at x = a.

Long Division of Polynomials

Divide $6x^3 - 19x^2 + 16x - 4byx - 2$, and use the result to factor the polynomial completely.

Sometimes, long division will produce a nonzero remainder. Example: $x^2 + 3x + 5 by x + 1$

In fractional form, you can write this result as follows.

Synthetic Division:

Use synthetic division to divide $x^4 - 10x^2 - 2x + 4by x + 3$

Solution

You should set up the array as follows. Note that a zero is included for each missing term in the dividend.

Then, use the synthetic division pattern by adding terms in columns and multiplying the results by -3.

Divisor:
$$x + 3$$

 -3 Dividend: $x^4 - 10x^2 - 2x + 4$
 -3 Dividend: $x^4 - 10x^2 - 2x + 4$
 -3 9 3 -3
 1 -3 -1 1 (1)
Remainder: 1

Quotient:
$$x^3 - 3x^2 - x + 1$$

So, you have

$$\frac{x^4 - 10x^2 - 2x + 4}{x + 3} = x^3 - 3x^2 - x + 1 + \frac{1}{x + 3}.$$

The Rational Zero Test If the polynomial

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

Has integer coefficients, every rational zero of f has the form

Rational zero
$$=$$
 $\frac{p}{q}$

Where p and q have no common factors other than 1, p is a factor of the constant term a_0 and q is a factor of the leading coefficient a_n .

Example: Find the rational zeros of $f(x) = 2x^3 + 3x^2 - 8x + 3$

$$p = 2 \text{ and } q = 3$$
Possible Rational Zeros = $\frac{factors \text{ of } 3}{factors \text{ of } 2} = \pm 1, \pm 3, \pm \frac{1}{2}, \pm \frac{3}{2}$

By synthetic division, you can determine that x = 1 is a rational zero.

So, f(x) factors as

$$f(x) = (x - 1)(2x^2 + 5x - 3) = (x - 1)(2x - 1)(x + 3)$$