1.3 Exponential Functions

Exponential Function: Let a be a positive real number other than 1. The function $f(x) = a^x$ Is the exponential function with base a.

Exponent Rules		
1. $a^m * a^n = a^{m+n}$	2. $(a^m)^n = a^{mn}$	3. $(ab)^m = a^m b^m$
$4. (a^m b^n)^p = a^{mp} b^{np}$	5. $\frac{a^m}{a^n} = a^{m-n}$	6. $a^0 = 1$ $a \neq 0$
$7. a^{-n} = \frac{1}{a^n}$	$8. \frac{a^{-m}}{b^{-n}} = \frac{b^n}{a^m}$	9. $a^1 = a$

<u>Half-life</u>: The amount of time a radioactive substance takes for half of the substance to change from radioactive to not radioactive state.

Exponential Growth and Decay: The function $y = k * a^x$, where k > 0 means growth if a > 1, and where 0 < a < 1 means decay.

Types of Interest		
Compound Interest	Continuously Compound Interest	
 A = p(1 + r/n)^{nt} P is the principle r is the rate as a decimal n is the number of time per year the interest is compounded t is the number of years 	$A = Pe^{rt}$	

Logarithms: Remember that $\log_b x = y$ and $b^y = x$ are equivalent.