### 1.10 Functions and Logarithms

Log Function Definition: For $x>0$, and $a \neq 1$,

$$
y=\log _{a} x \text { if and only if } x=a^{y}
$$

The function given by
$f(x)=\log _{a} x(\operatorname{read}$ as $\log$ base a of x$)$ is called the logarithmic function with base a.
Examples: Evaluate the following:

| $1 . \log _{2} 32=5$ | $2 . \log _{3} \frac{1}{27}=-3$ | $3 . \log _{7} 1=0$ |
| :--- | :--- | :--- |

Properties of Logs

1. $\log _{a} 1=0$ because $a^{0}=1$
2. $\log _{a} a=1$ because $a^{1}=a$
3. $\log _{a} a^{x}=x$ and $a^{\log _{a} x}=x$ (inverse properties)
4. If $\log _{a} x=\log _{a} y$, then $x=y$ (one-to one property)

The Natural Logarithmic Function:
For $x>0$,
$y=\ln x$ if and only if $x=e^{y}$
The function given by $f(x)=\log _{e} x=\ln x$ Is called the natural log function.

Change of Base Formula: Let $\mathrm{a}, \mathrm{b}$, and x be positive real numbers such that $a \neq 1$ and $b \neq 1$. Then $\log _{a} x$ can be converted to a different base using the following:

$$
\log _{a} x=\frac{\ln x}{\ln a}
$$

Examples: Change the base

1. $\log _{4} 25=\frac{\ln 25}{\ln 4}$

| Properties of Logarithms |  |  |
| :---: | :---: | :---: |
|  | 2. Quotient Rule | 3. Power Rule |
| 1. Product Rule | 2. $x$ |  |
| $\log _{a} x y=\log _{a} x+\log _{a} y$ | $\log _{a} \frac{x}{y}=\log _{a} x-\log _{a} y$ | $\log _{a} x^{y}=y \log _{a} x$ |

## Examples:

1. Rewrite the following in terms of $\ln 2$ and $\ln 3$
a. $\ln 6=\ln 2+\ln 3$
b. $\ln \frac{2}{27}=\ln 2-\ln 27=\ln 2-3 \ln 3$
2. Expand the following:
a. $\log _{4} 5 x^{3} y=\log _{4} 5+3 \log _{4} x+\log _{4} y$
b. $\ln \frac{\sqrt{3 x-5}}{7}=\frac{1}{2}(\ln (3 x-5)-\ln 7$
3. Condense the following:
a. $\frac{1}{2} \log _{10} x+3 \log _{10}(x+)=\log _{10} \sqrt{x}(x+1)^{3}$

Solve equations with Logs:

1. Sarah invests $\$ 1000$ in an account that earns $5.25 \%$ compounded annually. How long will it take the account to reach $\$ 2500$ ?

$$
\begin{gathered}
y=P e^{r t} \\
2500=1000 e^{0.0525 t} \\
2.5=e^{0.0525 t} \\
\ln 2.5=\ln e^{0.0525 t} \\
\ln 2.5=0.0525 t \\
t=3.86 \text { years }
\end{gathered}
$$

2. Use properties of logs to solve for $y$.

$$
\ln y=2 t+4
$$

3. Solve for $\mathrm{x}: \log _{2}\left(\log _{2} x\right)=2$
4. Solve for $\mathrm{x}:\left(\log _{3} x\right)^{2}-\log _{3} x^{2}=3$
