1.10 Functions and Logarithms

Log Function Definition: For x > 0, and $a \neq 1$,

 $y = \log_a x$ if and only if $x = a^y$

The function given by

 $f(x) = \log_a x$ (read as log base a of x) is called the logarithmic function with base a.

Examples: Evaluate the following:

1. $\log_2 32 = 5$	2. $\log_3 \frac{1}{27} = -3$	3. $\log_7 1 = 0$

Properties of Logs

- 1. $\log_a 1 = 0$ because $a^0 = 1$
- 2. $\log_a a = 1$ because $a^1 = a$
- 3. $\log_a a^x = x$ and $a^{\log_a x} = x$ (inverse properties)
- 4. If $\log_a x = \log_a y$, then x = y (one-to one property)

The Natural Logarithmic Function: For x > 0,

 $y = \ln x$ if and only if $x = e^y$

The function given by $f(x) = \log_e x = \ln x$ Is called the natural log function.

Change of Base Formula: Let a, b, and x be positive real numbers such that $a \neq 1$ and $b \neq 1$. Then $\log_a x$ can be converted to a different base using the following:

$$\log_a x = \frac{\ln x}{\ln a}$$

Examples: Change the base

1. $\log_4 25 = \frac{\ln 25}{\ln 4}$

Properties of Logarithms			
1. Product Rule $\log_a xy = \log_a x + \log_a y$	2. Quotient Rule $\log_a \frac{x}{y} = \log_a x - \log_a y$	3. Power Rule $\log_a x^y = y \log_a x$	

Examples:

- 1. Rewrite the following in terms of $\ln 2$ and $\ln 3$
 - a. $\ln 6 = \ln 2 + \ln 3$
 - b. $\ln \frac{2}{27} = \ln 2 \ln 27 = \ln 2 3 \ln 3$

- 2. Expand the following:
 - a. $\log_4 5x^3y = \log_4 5 + 3\log_4 x + \log_4 y$
 - b. $\ln \frac{\sqrt{3x-5}}{7} = \frac{1}{2}(\ln(3x-5)) \ln 7$
- 3. Condense the following:
 - a. $\frac{1}{2}\log_{10} x + 3 \log_{10}(x+) = \log_{10} \sqrt{x} (x+1)^3$

Solve equations with Logs:

- 1. Sarah invests \$1000 in an account that earns 5.25% compounded annually. How long will it take the account to reach \$2500?
 - $y = Pe^{rt}$ $2500 = 1000e^{0.0525t}$ $2.5 = e^{0.0525t}$ $\ln 2.5 = \ln e^{0.0525t}$ $\ln 2.5 = 0.0525t$ t = 3.86 years
- 2. Use properties of logs to solve for y.

$$\ln y = 2t + 4$$

- 3. Solve for x: $\log_2(\log_2 x) = 2$
- 4. Solve for x: $(\log_3 x)^2 \log_3 x^2 = 3$