Definition of Inverse Function: Let f and g be two functions such that

f(g(x)) = x for every x in the domain of g

And

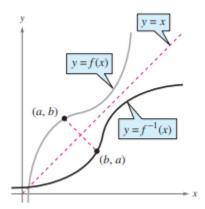
g(f(x)) = x for every x in the domain of f.

Under these conditions, the function g is the **inverse function** of the function f. The function g is denoted by f^{-1} (read f-inverse)

Therefore, $f(f^{-1}) = x$ and $f^{-1}(f(x)) = x$.

The domain of f must be equal to the range of f^{-1} , and the range of f must be equal to the domain of f^{-1} .

Graphically, The inverse functions reflect across the line y = x.



One-to-One Function: A function f is one-to-one, if for a and b in its domain, f(a) = f(b) implies that a = b.

Existence of an Inverse Function: A function f has an inverse function f^{-1} if and only if f is one-to-one.

Finding an Inverse Function.

- 1. Use the Horizontal Line Test to decide whether f has an inverse function.
- 2. In the equation for f(x), replace f(x) with y.
- 3. Interchange the roles of x and y, and solve for y.
- 4. Replace y by $f^{-1}(x)$ in the new equation.
- 5. Verify that f and f^{-1} are inverse functions of each other by showing that the domain of f is equal to the range of f^{-1} , the range of f is equal to the domain of f^{-1} , and $f(f^{-1}(x)) = x$ and $f^{-1}(f(x)) = x$.

Example: Find the inverse function of $f(x) = \frac{5-3x}{2}$

F	
$f(x) = \frac{5 - 3x}{2}$	Write the original function
$y = \frac{5 - 3x}{2}$	Replace f(x) with y
$x = \frac{5 - 3y}{2}$	Interchange x and y
2x = 5 - 3y	Solve for y.
2x - 5 = -3y $2x - 5$	
$y = \frac{2x - 5}{-3}$	
$f^{-1}(x) = \frac{2x - 5}{-3}$	Replace y with $f^{-1}(x)$

You Try: Find the inverse of each of the functions.

$1. f(x) = x^3$	2. $f(x) = \frac{2x+4}{x-1}$
$f^{-1}(x) = \sqrt[3]{x}$	$f^{-1}(x) = \frac{-x - 4}{2 - x}$